352 research outputs found

    Global firing induced by network disorder in ensembles of active rotators

    Full text link
    We study the influence of repulsive interactions on an ensemble of coupled excitable rotators. We find that a moderate fraction of repulsive interactions can trigger global firing of the ensemble. The regime of global firing, however, is suppressed in sufficiently large systems if the network of repulsive interactions is fully random, due to self-averaging in its degree distribution. We thus introduce a model of partially random networks with a broad degree distribution, where self-averaging due to size growth is absent. In this case, the regime of global firing persists for large sizes. Our results extend previous work on the constructive effects of diversity in the collective dynamics of complex systems.Comment: 8 pages, 6 figure

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    A statistical mechanics of an oscillator associative memory with scattered natural frequencies

    Full text link
    Analytic treatment of a non-equilibrium random system with large degrees of freedoms is one of most important problems of physics. However, little research has been done on this problem as far as we know. In this paper, we propose a new mean field theory that can treat a general class of a non-equilibrium random system. We apply the present theory to an analysis for an associative memory with oscillatory elements, which is a well-known typical random system with large degrees of freedoms.Comment: 8 pages, 4 figure

    Scaling and singularities in the entrainment of globally-coupled oscillators

    Full text link
    The onset of collective behavior in a population of globally coupled oscillators with randomly distributed frequencies is studied for phase dynamical models with arbitrary coupling. The population is described by a Fokker-Planck equation for the distribution of phases which includes the diffusive effect of noise in the oscillator frequencies. The bifurcation from the phase-incoherent state is analyzed using amplitude equations for the unstable modes with particular attention to the dependence of the nonlinearly saturated mode ∣α∞∣|\alpha_\infty| on the linear growth rate γ\gamma. In general we find ∣α∞∣∼γ(γ+l2D)|\alpha_\infty|\sim \sqrt{\gamma(\gamma+l^2D)} where DD is the diffusion coefficient and ll is the mode number of the unstable mode. The unusual (γ+l2D)(\gamma+l^2D) factor arises from a singularity in the cubic term of the amplitude equation.Comment: 11 pages (Revtex); paper submitted to Phys. Rev. Let

    Phase ordering on small-world networks with nearest-neighbor edges

    Full text link
    We investigate global phase coherence in a system of coupled oscillators on a small-world networks constructed from a ring with nearest-neighbor edges. The effects of both thermal noise and quenched randomness on phase ordering are examined and compared with the global coherence in the corresponding \xy model without quenched randomness. It is found that in the appropriate regime phase ordering emerges at finite temperatures, even for a tiny fraction of shortcuts. Nature of the phase transition is also discussed.Comment: 5 pages, 4 figures, Phys. Rev. E (in press

    Coupled Oscillators with Chemotaxis

    Full text link
    A simple coupled oscillator system with chemotaxis is introduced to study morphogenesis of cellular slime molds. The model successfuly explains the migration of pseudoplasmodium which has been experimentally predicted to be lead by cells with higher intrinsic frequencies. Results obtained predict that its velocity attains its maximum value in the interface region between total locking and partial locking and also suggest possible roles played by partial synchrony during multicellular development.Comment: 4 pages, 5 figures, latex using jpsj.sty and epsf.sty, to appear in J. Phys. Soc. Jpn. 67 (1998

    Partially and Fully Frustrated Coupled Oscillators With Random Pinning Fields

    Full text link
    We have studied two specific models of frustrated and disordered coupled Kuramoto oscillators, all driven with the same natural frequency, in the presence of random external pinning fields. Our models are structurally similar, but differ in their degree of bond frustration and in their finite size ground state properties (one has random ferro- and anti-ferromagnetic interactions; the other has random chiral interactions). We have calculated the equilibrium properties of both models in the thermodynamic limit using the replica method, with emphasis on the role played by symmetries of the pinning field distribution, leading to explicit predictions for observables, transitions, and phase diagrams. For absent pinning fields our two models are found to behave identically, but pinning fields (provided with appropriate statistical properties) break this symmetry. Simulation data lend satisfactory support to our theoretical predictions.Comment: 37 pages, 7 postscript figure

    Acceleration effect of coupled oscillator systems

    Full text link
    We have developed a curved isochron clock (CIC) by modifying the radial isochron clock to provide a clean example of the acceleration (deceleration) effect. By analyzing a two-body system of coupled CICs, we determined that an unbalanced mutual interaction caused by curved isochron sets is the minimum mechanism needed for generating the acceleration (deceleration) effect in coupled oscillator systems. From this we can see that the Sakaguchi and Kuramoto (SK) model which is a class of non-frustrated mean feild model has an acceleration (deceleration) effect mechanism. To study frustrated coupled oscillator systems, we extended the SK model to two oscillator associative memory models, one with symmetric and one with asymmetric dilution of coupling, which also have the minimum mechanism of the acceleration (deceleration) effect. We theoretically found that the {\it Onsager reaction term} (ORT), which is unique to frustrated systems, plays an important role in the acceleration (de! celeration) effect. These two models are ideal for evaluating the effect of the ORT because, with the exception of the ORT, they have the same order parameter equations. We found that the two models have identical macroscopic properties, except for the acceleration effect caused by the ORT. By comparing the results of the two models, we can extract the effect of the ORT from only the rotation speeds of the oscillators.Comment: 35 pages, 10 figure

    Solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction

    Full text link
    We describe a solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction. We derive self-consistent equations of the order parameters and obtain three non-trivial solutions characterized by the rotation number. We also derive relevant characteristics such as the location-dependent distributions of the resultant frequencies of desynchronized oscillators. Simulation results closely agree with the theoretical ones

    Oscillator neural network model with distributed native frequencies

    Full text link
    We study associative memory of an oscillator neural network with distributed native frequencies. The model is based on the use of the Hebb learning rule with random patterns (ξiμ=±1\xi_i^{\mu}=\pm 1), and the distribution function of native frequencies is assumed to be symmetric with respect to its average. Although the system with an extensive number of stored patterns is not allowed to get entirely synchronized, long time behaviors of the macroscopic order parameters describing partial synchronization phenomena can be obtained by discarding the contribution from the desynchronized part of the system. The oscillator network is shown to work as associative memory accompanied by synchronized oscillations. A phase diagram representing properties of memory retrieval is presented in terms of the parameters characterizing the native frequency distribution. Our analytical calculations based on the self-consistent signal-to-noise analysis are shown to be in excellent agreement with numerical simulations, confirming the validity of our theoretical treatment.Comment: 9 pages, revtex, 6 postscript figures, to be published in J. Phys.
    • …
    corecore